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Abstract
We explore several aspects of the current fluctuations and correlations in the
box–ball system, an integrable cellular automaton in one space dimension. The
state we consider is an ensemble of microscopic configurations where the box
occupancies are independent random variables (i.i.d. state), with a given mean
ball density. We compute several quantities exactly in such homogeneous sta-
tionary state: the mean value and the variance of the number of balls Nt crossing
the origin during time t, and the scaled cumulants generating function associated
to Nt. We also compute two spatially integrated current–current correlations.
The first one, involving the long-time limit of the current–current correlations,
is the so-called Drude weight and is obtained with thermodynamic Bethe ansatz
(TBA). The second one, involving equal time current–current correlations is
calculated using a transfer matrix approach. A family of generalized currents,
associated to the conserved charges and to the different time evolutions of the
models are constructed. The long-time limits of their correlations generalize the
Drude weight and the second cumulant of Nt and are found to obey nontrivial
symmetry relations. They are computed using TBA and the results are found to
be in good agreement with microscopic simulations of the model. TBA is also
used to compute explicitly the whole family of flux Jacobian matrices. Finally,
some of these results are extended to a (non-i.i.d.) two-temperatures general-
ized Gibbs state (with one parameter coupled to the total number of balls, and
another one coupled to the total number of solitons).
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1. Introduction

The box ball system (BBS) is an integrable cellular automaton introduced in 1990 by Takahashi
and Satsuma [1]. In this model some ‘balls’ occupy the sites (‘boxes’) of a one-dimensional
lattice and propagate according to some simple deterministic rules, as explained below. We start
from an initial configuration of balls divided into L boxes, with at most one ball per box. The
configuration at the next time step is obtained by letting a ‘carrier’ travel through the system
from left to right. Doing so, each time the carrier passes over an occupied box and if it has not
reached its maximum load l, it loads the ball and leaves the box empty. Each time the carrier
carries at least one ball and passes over an empty box it unloads a ball in the box. An example
is given in figure 1.3

Despite its apparent simplicity this model possesses stable solitons with nontrivial scattering
under collisions. It has an infinity of conserved quantities, and its very rich mathematical and
integrable structures have attracted a lot of interest. For example, the above combinatorial rule
for the time evolution has its origin in the quantum R matrix at q = 0 as explained in appendix
D (see [2] for a review).

An interesting family of problems arises when considering a statistical ensemble of random
microscopic ball configurations [3–11]. In the simplest case the occupancies of the boxes can
be taken to be independent and identically distributed (i.i.d.) random variables, and parameter-
ized with a single parameter (the mean ball density). Such a statistical ensemble corresponds
to an homogeneous and stationary state, and many quantities, like the densities of the vari-
ous types of solitons and their associated mean velocities, can be computed exactly using the
thermodynamic Bethe ansatz (TBA) [5, 11, 12].

It has also been shown that a hydrodynamic approach can accurately capture the long-time
and large distance evolution of some inhomogeneous states. Due to the extensive number
of conserved quantities in the model, the appropriate framework is the so-called general-
ized hydrodynamics (GHD). Introduced a few years ago [13–15], the GHD is based on the
assumption that the system is locally in an homogeneous state with maximum entropy (gen-
eralized Gibbs ensemble (GGE) [16]) and the approach amounts to constructing and solving
the set of continuity equations involving the local currents and local densities associated to the
conserved quantities of an integrable system. It has been applied successfully to many inte-
grable quantum and classical systems. On the classical side, we can mention for instance the
application of GHD to the hard-rods model [17, 18], to the Toda model [19], to the sinh-Gordon
model [20], to the BBS [10, 12] and to the (higher rank) complete BBS [21].

In the context of BBS, the evolution triggered by an initial domain-wall state with two dif-
ferent ball densities in the left half and the right half has been studied in details using GHD
[12, 21]. In such a setup the BBS develops a series of plateaux in the variable ζ = x/t (space
coordinate divided by time). The ball density and soliton content inside each plateau as well as
the location ζ0, ζ1, . . . of the steps between consecutive plateaux could be determined exactly
using GHD. In this domain-wall problem it has also been possible to go beyond the simplest

3 The dynamics can also be defined on a periodic system by initializing the carrier load to some suitable value
(proposition 5.1 of [2]).
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Figure 1. Top line: ball configuration. Bottom line: configuration at the next time step.
We assumed here a carrier capacity l � 3.

hydrodynamic description by investigating some fluctuations effects. Due to the fact that the
velocity of a given soliton is affected by the fluctuations of the densities of the other species
of soliton, these velocities fluctuate and the step between two consecutive plateaux is not per-
fectly sharp but broadened. This broadening has a diffusive scaling and the width of the step
number k behaves as δx � t1/2Σk with constants Σk that have been calculated analytically. All
these results for the domain wall problem have been also checked accurately using numerical
simulations.

In the present work we are interested in the probability distribution of the number Nt of balls
passing through the origin during a time t. We may take an initial domain wall state where the
left half is an i.i.d. state with ball density pleft > 0, and the right half initially empty (pright = 0).
In such a case the number of transferred balls is also equal the number of balls in the right half at
time t. But the ball propagation takes place only in the right direction and there is no ‘blocking
effect’ from existing balls in the BBS dynamics. So, Nt does in fact not depend on the initial
state in the right half of the system. The probability distribution of Nt is therefore the same (i)
for the domain wall setup with (pleft = p and pright = 0) and (ii) in a uniform i.i.d. state with
ball density pleft = pright = p.

In the first step (section 2.2) we are interested in the second cumulant c2 of Nt. The result is
obtained by two different methods, by a direct calculation and with the TBA. Next (section 2.3)
we compute the Drude weight, which is defined here in terms of the long-time limit of a spa-
tially integrated current–current correlation. This correlation is formally similar to the one
defining the second cumulant of Nt and the Drude weight is obtained using a TBA calculation
which parallels that of the second cumulant.

A particularity of the model is to have a commuting family of temporal evolutions which
are in duality with the conserved quantities4. In section 2.4 the currents associated with the
conserved charges under the different temporal evolutions are introduced. These depend on
one index associated to a conserved charge, and another one associated to a time evolution. The
generalized current operators turn out to be symmetric under the exchange of the two indices,
highlighting this duality. We compute the long-time limit of the correlations associated to these
generalized currents. They generalize c2 and D, and are shown to enjoy nontrivial symmetry
relations among them. In section 2.5 we report on numerical calculations of the Drude weights
and the generalized current correlations using microscopic simulations of the BBS, and a good
agreement is found with the TBA results. In section 2.6 we compute the so-called flux Jacobian,
which is a matrix playing an important role in GHD. The section 2.7 discusses another quantity
defined in terms of spatially integrated current–current correlation, the variance of the total
current. Contrary to the Drude weight the correlations are now taken at equal time, and this
variance is obtained using a transfer matrix approach.

4 Although the commuting time evolutions should in principle be a common feature of integrable systems, their imple-
mentation can be quite involved in general. This is one reason why the BBS is a precious model, since it allows concrete
descriptions of the different time evolution, as well as their simulations.
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In the second part of the paper (section 3) we compute the scaled cumulants generating
function (SCGF) associated to Nt. It characterizes all the cumulants of the probability distribu-
tion [22]. The Legendre transform of the SCGF, called large deviation rate function, describes
not only the typical fluctuations around its mean value, but also the rare events. The large
deviation rate function is compared with the results of numerical simulations. Finally, several
results (second cumulant, Drude weight and SCGF) are generalized to a more complex GGE,
with two temperatures (appendix C), one coupled to the total number of balls and the other one
coupled to the total number of solitons.

2. Current correlations and Drude weights

We consider an i.i.d. homogeneous stationary state (characterized by some ball density p =
z/(z + 1) < 1/2) and we study the probability distribution of the number Nt of balls crossing
the origin between time 0 and time t, in the long time limit. The capacity of the carrier which
induces the dynamics is denoted by l.

2.1. Mean current

The mean value of Nt grows linearly with time at a rate given by the mean ball current:

〈Nt〉 ∼ t j (l). (2.1)

The mean ball current j(l) is a simple function of the soliton currents j(l)k

j (l)(z) =
∞∑

k=1

k j(l)k . (2.2)

The factor k above reflects the fact that each type-k solitons carries k balls. The mean soliton
currents are products of the soliton velocities v(l)

k by the soliton densities ρk:

j(l)k = ρkv
(l)
k . (2.3)

In integrable systems such densities can be obtained using the TBA [23]. This approach, applied
to the BBS [5, 12], leads to a simple expression for the mean soliton densities in terms of the
ball fugacity z = p/(1 − p):

ρk =
zk(1 − z)3(1 + zk+1)

(1 + z)(1 − zk)(1 − zk+1)(1 − zk+2)
. (2.4)

As for the velocities, they obey a set of equations which reflect the fact that the mean veloc-
ity of each soliton species is affected by the collisions with the solitons of the other species.
The essential ideas were proposed in [24–26], to describe soliton gases in the context of the
Korteweg–de Vries and nonlinear Schrödinger equations. In the case of BBS the equation for
the effective velocities reads [27] (see also [10, 12])

v(l)
i = κ(l)

i +

∞∑
k=1

Mi,k(v(l)
i − v(l)

k )ρk (∀ i � 1), (2.5)

where the bare soliton velocities are

κ(l)
i = min(i, l) (2.6)
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and the matrix M (with indices from [1,∞] × [1,∞]) encoding the shifts experienced by
solitons during collisions is

Mi,k = 2 min(i, k). (2.7)

For i.i.d. states these equations could be solved explicitly [12] and the following expression
for the velocities were obtained:

v(l)
k =

1 + zl+1

1 − zl+1
vmin(k,l), vk =

1 + z
1 − z

k − 2z(1 + z)(1 − zk)
(1 − z)2(1 + zk+1)

. (2.8)

Remark: v(∞)
k = vk. Combining the results above the mean ball current finally reduces to

j (l)(z) =
z

1 − z
− (l + 1)

zl+1

1 − zl+1
. (2.9)

2.2. Second cumulant

Next we are interested in the second cumulant of Nt, which turns out to be linear in t:〈
δN2

t

〉
=

〈
N2

t

〉
− 〈Nt〉2 ∼ t c2. (2.10)

This cumulant can be expressed as a time-integrated current–current correlation:

Nt =

∫ t

0
j(0, s)ds, (2.11)

〈
δN2

t

〉
=

∫ t

0

∫ t

0
ds ds′〈 j(0, s) j(0, s′)〉c ∼ t c2, (2.12)

where j(x, s) is the current flowing from the site x − 1 to the site x at time s. The superscript (l)
specifying the dynamics Tl will often be omitted in what follows. A continuous time notation
is used here for clarity, but the BBS is a discrete time model and

∫ t
0ds is in fact equivalent to∑t

s=0. In the carrier picture for BBS, j(x, s) is nothing but the load of the carrier on this link.
A general method to obtain such cumulants in integrable systems is described in [28, 29]. It
applies when all the cumulants scale linearly in time. In what follows we apply this method to
the case of the BBS, where it simplifies considerably.

2.2.1. Correlations and sum rules. We start from the general sum rule (A.12) derived in
appendix A and specialize it to f (x) = |x|:

∞∑
x=−∞

|x|〈(n(x, t) − n(x, 0)) (n(0, t) − n(0, 0))〉c = −2
∫ t

0

∫ t

0
ds ds′〈 j(0, s) j(0, s′)〉c

. (2.13)

Using the translation invariance (in space and time) of the correlators appearing in the lhs we
get

〈
δN2

t

〉
=

1
2

∞∑
x=−∞

|x|
(
〈n(x, t)n(0, 0)〉c + 〈n(−x, t)n(0, 0)〉c − 2〈n(x, 0)n(0, 0)〉c

)
=

∞∑
x=−∞

|x|
(
〈n(x, t)n(0, 0)〉c − 〈n(x, 0)n(0, 0)〉c

)
. (2.14)

5
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The equation above is essentially equivalent to (2.23) of [30] (see also (A.33) of [29]). The
second cumulant is then expressed as

c2 = lim
t→∞

1
t

∞∑
x=−∞

|x|
(
〈n(x, t)n(0, 0)〉c − 〈n(x, 0)n(0, 0)〉c

)
. (2.15)

The connected equal time correlation 〈n(x, 0)n(0, 0)〉c vanishes for x �= 0 in the i.i.d. state, so
that

c2 = lim
t→∞

1
t

∞∑
x=−∞

|x|〈n(x, t)n(0, 0)〉c. (2.16)

Since the propagation only takes place in the right direction in the BBS, causality implies that
the connected correlation 〈n(x, t)n(0, 0)〉c vanishes if x < 0 (for t > 0). So we have:

∞∑
x=−∞

|x|〈n(x, t)n(0, 0)〉c =

∞∑
x=−∞

x〈n(x, t)n(0, 0)〉c. (2.17)

We differentiate with respect to time, and use the local conservation law d
dt n(x, t) = j(x, t) −

j(x + 1, t):

d
dt

∞∑
x=−∞

|x|〈n(x, t)n(0, 0)〉c =

∞∑
x=−∞

x〈( j(x, t) − j(x + 1, t)) n(0, 0)〉c (2.18)

=

∞∑
x=−∞

〈 j(x, t)n(0, 0)〉c =

∞∑
x=−∞

〈 j(0, 0)n(x,−t)〉c. (2.19)

We recognize the conserved charge Q =
∑∞

x=−∞n(x,−t) in the rhs, which means that (2.18)
and (2.19) is independent of time. It can be evaluated at t = 0, or, instead, averaged over
time. This yields two equivalent formulations of c2 in terms of integrated current–density
correlations:

c2 =

∞∑
x=−∞

〈 j(x, 0)n(0, 0)〉c (2.20)

= lim
t→∞

1
t

∫ t

0
ds

∞∑
x=−∞

〈 j(x, s)n(0, 0)〉c. (2.21)

2.2.2. Direct calculation. In a GGE where β is the inverse temperature associated to the total
number of balls (and z = exp(−β)), (2.20) can be written as

c2 = − ∂ j
∂β

= z
∂ j
∂z

. (2.22)

Using (2.9) we directly obtain

c2 =
z

(1 − z)2
− (l + 1)2 zl+1

(1 − zl+1)2
. (2.23)

6
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Table 1. Variance of the number of transferred balls for different values of the density p
and capacity l. Comparison between (2.23) and numerical results (last column).

p l t c2 (2.23)
〈
δN2

t

〉
/t numerics

0.2 4 6000 0.419 98 0.419
0.4 4 2000 1.633 52 1.63
0.3 10 2000 1.301 66 1.29

The above formula has been compared with numerical simulation of the BBS. The mean value
and the second cumulant turn out to be in good agreement with the theoretical values (table 1).
A generalization of this result to a two-temperature GGE is given in (C.13).

2.2.3. Second cumulant using TBA. We will now compute c2 by a different approach. The
total current J and the total number of balls Q can be decomposed into a mean value plus a
fluctuating part: J = L j + δJ, Q = Lp+ δQ. With these definitions (2.21) gives

c2 = L−1 lim
t→∞

1
t

∫ t

0
ds 〈δJ(s)δQ(0)〉 . (2.24)

The pseudoenergy εi = − ln
(

2Ei−Ei+1−Ei−1
L−2Ei

)
can be defined for each microscopic configu-

ration, from the energies Ei, Ei−1 and Ei+1. See appendix D or [12, equation (2.7)] for the
explanation of Ei.5 These energies are conserved under the time evolution, and so are the
pseudoenergies. The pseudoenergies can however fluctuate from configuration to configura-
tion in a GGE. If we define δεi = L1/2(εi − ε̄i), with ε̄i = 〈εi〉, these fluctuations have diagonal
correlations [12]

〈δεiδε j〉 = δi j(1 + eε̄i)/σi, (2.25)

where

σi = 1 −
∑

k

Mikρk (2.26)

is the hole density and M was given in (2.7).6 Note also that the expectation values of the
pseudoenergies are given by ε̄i = − ln

(
ρi/σi

)
. The relation (2.25) was checked numerically

(see table 2).
In turn, the fluctuations of the other quantities can be related to the fluctuations δε j. In a

large system δJ/L and δQ/L are typically small, of order O(L−1/2), and we may linearize the
relation between the ball density fluctuation and the pseudoenergies,

δQ/
√

L =

∞∑
i=1

δεi
∂ρb

∂ε̄i
, (2.27)

as well as the relation between the ball current density fluctuation and the pseudo energies

δJ/
√

L =
∞∑

i=1

δεi
∂ jb
∂ε̄i

+ · · · . (2.28)

5 The pseudoenergies can be used to write down the (fermionic) free energy F = −
∑

k ln(1 + e−εk ) [12, (3.15)] and
the mode occupancies are nk = dF/d(εk) = (1 + eεk )−1 = (1 + 1/yk)−1 with yk = e−εk .
6 The values of σi in the i.i.d. state are given by (C.4) with a = z (or (3.25) in [12]).
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Table 2. Pseudoenergy correlations for ball density p = 0.4: comparison between
the TBA result (rhs of (2.25)), and numerical simulations (system size L = 8 × 104

and average over Nsamples = 108 configurations). The numerical results correspond to

L
〈

ln
(

2Ei−Ei+1−Ei−1
L−2Ei

)
ln
(

2E j−E j+1−E j−1
L−2E j

)〉c
. As for the expectation values 〈εi〉, the

simulation results agree with − ln
(
ρi/σi

)
with very good accuracy (data not shown).

i j δi j(1 + eε̄i )/σi 〈δεiδε j〉 numerics

1 1 8.012 82 8.0117
1 2 0 0.000 27
1 3 0 −0.000 79
2 2 27.2183 27.223
2 3 0 −0.0053
3 3 65.5367 65.588
4 4 131.789 132.07
5 5 238.454 239.37

In the equations above the ball density was denoted by ρb and the ball current by jb. In (2.28) we
have decomposed a current fluctuation, which is not conserved in time, in terms of fluctuations
δεi of the pseudoenergies. Since each εi is a function of the {Ek}, the pseudoenergies and their
fluctuations δεi are configuration-dependent but independent of time. So, by decomposing δJ
over the δεi we have dropped all the time dependence in δJ and only the conserved component
of the current has been kept (hence the dots in (2.28)). Following the idea of hydrodynamics
projection onto the space of conserved quantities [15] we are here restricting ourselves to the
part of the current which is constant in time and can be expressed in terms of the conserved
energies. It is of course legitimate to do so in order to compute c2, thanks to the long-time limit
in (2.24). Note that, in contrast, nothing was dropped in (2.27) since the total number of balls
(and thus also δQ) is a conserved quantity.

Replacing (2.27), (2.28) and (2.25) in (2.24) yields

c2 =

∞∑
i=1

∂ρb

∂ε̄i

∂ jb
∂ε̄i

1 + eε̄i

σi
. (2.29)

What remains to be done is to compute the derivatives ∂ρb
∂ε̄i

and ∂ jb
∂ε̄i

.
Once the pseudoenergies associated to the GGE are known we can introduce the ‘dressing’

operation, which is standard in the framework of TBA. A set of quantities oi labelled by
some index i ∈ [1,∞] representing a soliton size can be grouped into a column vector o =
(o1, o2, . . .). We then define the ‘dressing matrix’ G and construct a new dressed vector odr

[12]:

odr = Go, (2.30)

G = (1 + Mŷ)−1, (2.31)

where ŷ is the diagonal matrix with elements y j = exp(−ε̄ j).7

7 The diagonal entries of the matrix M do not enter the velocity equation (2.5) and there is therefore some freedom to
redefine its diagonal part. This leads to some freedom in the definition of the dressing operation and the present choice
(also used in [12]) is not the same as in [15]. With (2.31) we have odr = o − Mŷodr. In [15] the dressing operation
(denoted with a prime) is instead defined by odr′ = o + Tn̂odr′ where T = 1 − M and n̂ is the diagonal matrix with

8
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The basic relations that will be used in the following calculation are

yi = e−ε̄i =
ρi

σi
, σiv

(l)
i = (Gκ(l))i

(
= (κ(l)dr)i

)
. (2.32)

From G + GMŷ = Id, we find that GM is symmetric:

GM = ŷ−1 − Gŷ−1 = ŷ−1 − (ŷ + ŷMŷ)−1 = (GM)t. (2.33)

Its (i, j) element is concretely expressed as

(GM)i j = 2
∑

k

Gik min(k, j) = 2(Gκ( j))i = 2σiv
( j)
i , (2.34)

where the invariance of the last expression under the interchange i ↔ j can also be confirmed
at the level of explicit formulae, see (2.72). Using ∂yn

∂ε̄i
= −δinyi, we get

∂G jk

∂ε̄i
= −

∑
m,n

G jm
∂(Mŷ)mn

∂ε̄i
Gnk =

∑
m

G jmMmiyiGik

= (GM) jiyiGik = (GM)i jyiGik = 2σiv
( j)
i yiGik = 2ρiv

( j)
i Gik. (2.35)

Let us introduce η(l)
j , which includes, due to v(l=1)

k = 1, the density and the current of balls as
special cases:

η(l)
j =

∑
k

min( j, k)ρkv
(l)
k , η(1)

∞ = ρb, η(l)
∞ = jb. (2.36)

It is expressed in terms of G as

η(l)
j =

∑
k

min( j, k)ykσkv
(l)
k =

1
2

∑
k

(Mŷ) jk(Gκ(l))k

=
1
2

∑
k

(−Id + G−1) jk(Gκ(l))k = −1
2

∑
k

G jkκ
(l)
k +

1
2
κ(l)

j = η( j)
l , (2.37)

where the last equality is due to the symmetry (2.33). The symmetry of η under the exchange
of the upper and lower indices will play an important role in section 2.4. By means of (2.35),
the ε̄i derivative is calculated as

∂η(l)
j

∂ε̄i
= −1

2

∑
k

∂G jk

∂ε̄i
κ(l)

k = −
∑

k

ρiv
( j)
i Gikκ

(l)
k = −ρiσiv

( j)
i v(l)

i . (2.38)

From this with j = ∞ and (2.36) it follows that

∂ρb

∂ε̄i
= −ρiσiv

(∞)
i , (2.39)

∂ jb
∂ε̄i

= −ρiσiv
(∞)
i v(l)

i . (2.40)

entries ni = ρi/(σi + ρi). The two dressing definitions lead to the same effective soliton speeds v(l)
i = κ(l)dr

i /(1dr)i =

κ(l)dr′
i /(1dr′ )i and can both be used to obtain physical quantities.

9
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The results (2.39) and (2.40) can be inserted into (2.29):

c2 =
∑
i�1

ρiσi(ρi + σi)(v
(∞)
i )2v(l)

i . (2.41)

This expression can be checked to agree with (2.23).

2.3. Drude weights

The Drude weight is an important quantity in the field of transport. This linear response coef-
ficient characterizes the increase of the current in presence of a force which couples to the
charges. The recent years have seen very important progress in the understanding of this quan-
tity in one-dimensional integrable systems [31–36]. D can be defined in terms of a time average
current–current correlation function8:

D = lim
t→∞

1
t

∫ t

0
ds
∑

x

〈 j(x, s) j(0, 0)〉c. (2.43)

Noting the close similarity with (2.21), we repeat the hydrodynamic projection of the current
fluctuations onto the pseudoenergy fluctuations, which lead to (2.29). It yields to

D =

∞∑
i=1

(
∂ jb
∂ε̄i

)2 1 + eε̄i

σi
(2.44)

and the derivatives ∂ jb
∂ε̄i

are again given by (2.40). We thus obtain a TBA expression for the
Drude weight

D =
∑
i�1

ρiσi(ρi + σi)(v
(∞)
i v(l)

i )2. (2.45)

The expression for the density correlation R =
∑

x〈n(x, t)n(0, 0)〉c has a form similar to that
of c2 and D. Thanks to the conservation of the total number of balls R is independent of time
and in an i.i.d. state it is trivially equal to p(1 − p). Following the reasoning leading to (2.41)
and (2.45) we get

p(1 − p) =
∑
i�1

ρiσi(ρi + σi)(v
(∞)
i )2. (2.46)

For more details about the above formula and their expression in matrix forms we refer the
readers to section 2.6.3. The structure of these formulae is very similar to the results for c2

and D in the Lieb–Liniger model, obtained by Doyon and Spohn (equations (1.2) and (1.3) of
[33]). In the latter work a central idea is to implement the long-time limit in the definition of D
via the hydrodynamic projection (see (2.18) of [33]). This approach amounts to projecting the
observable of interest (for D, the current) via a suitable scalar product into the time-invariant
subspace, spanned by the conserved charges. As mentioned in the paragraph before (2.29), in

8 Using the sum rule (A.12) with the choice f (x) = x2, (2.43) can also be written

D = lim
t→∞

1
t2

∑

x

x2〈n(x, t)n(0, 0)〉c, (2.42)

which is another useful definition of D.

10
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the approach presented here the projection is implemented by decomposing the current fluctu-
ation over the conserved variables εi. The relation (2.25) shows that the pseudoenergies form
a convenient orthogonal basis in the subspace of conserved quantities.

Aided by some computer algebra system it was possible to obtain explicit formulae for the
Drude weight as a function of z for a few values of the carrier capacity l, denoted by D(l):

D(2) =
z(1 − z)(1 − z2)3(1 + 11z + 11z3 + z4)

(1 − z3)3(1 − z4)
, (2.47)

D(3) =
z(1 − z)(1 − z2)2(1 − z3)

(1 − z4)3(1 − z6)

× (1 + 11z + 44z2 + 29z3 + 30z4 + 29z5 + 44z6 + 11z7 + z8), (2.48)

D(4) =
z(1 − z2)4(1 − z3)

(1 − z5)3(1 − z6)(1 − z8)

×
(
1 + 10z + 35z2 + 117z3 + 68z4 + 254z5 + 95z6 + 357z7

+ 126z8 + 357z9 + 95z10 + 254z11 + 68z12 + 117z13

+ 35z14 + 10z15 + z16
)

, (2.49)

D(5) =
z(1 − z)(1 − z2)2(1 − z4)(1 − z5)

(1 − z6)3(1 − z8)(1 − z10)

×
(
1 + 11z + 44z2 + 140z3 + 355z4 + 406z5 + 480z6

+ 443z7 + 633z8 + 714z9 + 896z10 + 714z11 + 633z12

+ 443z13 + 480z14 + 406z15

+ 355z16 + 140z17 + 44z18 + 11z19 + z20
)
. (2.50)

The functions above as well as D(∞) are plotted as a function of the ball density p = z/(1 + z)
in figure 2. When the density is slightly below 0.5 we note a rapid increase of the Drude weight
with l. Since l acts as a cutoff on the effective speed of the solitons of size k � l, this indicates
that the large solitons have a dominant contribution to the Drude weight.

Going further one can obtain an expression for D(l) for generic l with finite number of terms.
To this end we first set Wi = ρiσi(ρi + σi)v2

i . Then we have

∑
i<l

Wi =
zAl

(1 + z)2(1 − zl)2(1 − zl+1)2
,

Al = 1 + 3z2l + 8z2l+1 + 3z2l+2 + z4l+2 − (l + 1)2(zl+2 + z3l)

+ (l2 − 4)(zl+1 + z3l+1) + (l − 1)(l + 3)(zl + z3l+2) − l2(zl−1 + z3l+3).

(2.51)

Note that A0 = A1 = 0 indeed holds. It leads to

D(1) =
∑
i�1

Wi(v
(1)
i )2 =

∑
i�1

Wi =
zA∞

(1 + z)2
=

z
(1 + z)2

. (2.52)

11
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Figure 2. Drude weight D(l) for l = 2, 3, 4, 5 and l = ∞, plotted as a function of the ball
density p. For l � 2 the Drude weight is linear in p at low density: D(l) = p+ 11p2 +
O(p3).

By means of this, the infinite sum (2.45) is reduced to a finite one as

D(l) =
∑
i<l

Wi(v
(l)
i )2 + (v(l)

l )2
∑
i�l

Wi (2.53)

=
∑
i<l

Wi(v
(l)
i )2 + (v(l)

l )2

(
z

(1 + z)2
−
∑
i<l

Wi

)
, (2.54)

where the second term is known by (2.51). Or equivalently,

D(l) =

(
1 + zl+1

1 − zl+1

)2
(∑

i<l

Wi(v2
i − v2

l ) + v2
l

z
(1 + z)2

)
. (2.55)

We note that in the half filled limit the Drude weight tends to a simple value

lim
z→1

D(l) =

(
l(l + 2)

6

)2

. (2.56)

This is consistent with the observation that D(∞) diverges when z → 1 (see figure 2). To con-
clude this section we mention that some generalization of these results to a two-temperature
GGE is discussed in appendix C.

2.4. Generalized current correlations and their symmetries

Thus far we have considered c2 (2.24), D (2.43) and R (2.46). They are all associated with the
number balls, which is one special case E∞ of the conserved quantities E j with j = 1, 2, . . .
[12]. Here we discuss a natural generalization corresponding to the whole family {Ej}.

12
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Figure 3. Top: the generalized current η(3)
2 (x) is shown in red letters. According to (D.7)

and (D.3), it is evaluated as min(2 − α1,β1), where α1 and β1 are numbers just under
and above it, respectively. Bottom: similarly, the generalized current η(2)

3 (x) is defined
using min(3 − α1,β1). One can see on this example that the two currents densities are
in fact equal: η(3)

2 (x) = η(2)
3 (x).

Let us denote by η̂(l)
j (x) the microscopic operator measuring the current associated to the jth

energy, under the time evolution Tl, and at position x. To define this operator microscopically
in a given state s of the BBS we need to consider two successive time evolutions s → Tl(s) →
TiTl(s), as illustrated in figure 3. Consider the carrier inducing the first Tl and let u(x) = (u0, u1)
be its state at position x, where u0 and u1 are the numbers of empty space and balls in it,
respectively. Similarly, let u′(x) = (u′

0, u′
1) be the state of another carrier for the second time

evolution Ti at position x. By the definition of the carrier capacity u0 + u1 = l and u′
0 + u′

1 = i.
Now η̂(l)

i (x) of the state s is defined by η̂(l)
i (x) = min(u′

0, u1) (red integers in figure 3). By extend-
ing the argument in section 2.2 in [12], it can be shown that these generalized currents are in
fact symmetric in the two capacities l and i: η̂(l)

i (x) = η̂(i)
l (x), and η̂(l)

∞(x) = j (l)(x) and η̂(1)
k (x) =

local term for the energy Ek. We refer the reader to appendix D for more details about the
construction of these currents.

The mean values of these energy currents are expressed in terms of η(l)
j (2.36) as

η(1)
j =

〈
η̂(1)

j

〉
=

∑
k�1

min( j, k)ρk, η(l)
j =

〈
η̂(l)

j

〉
=

∑
k�1

min( j, k)ρkv
(l)
k , (2.57)

where v(l=1)
k = 1 is used. The mean ball current (2.2) corresponds to η(l)

∞, and the ball density
is η(1)

∞ . Comparing (2.57) and (2.36), we see that the index l allows interpolating between the
density and the current, utilizing the variety of time evolutions in the system.

Now consider the time-averaged correlation

Cm,l,n
i, j = lim

tn→∞

1
tn

∫ tn

0
ds
∑

x

〈
η̂(m)

i (x, s)η̂(l)
j (0, 0)

〉c
, (2.58)

which is also expected to coincide with the limit

Cm,l,n
i, j = lim

tn→∞

∑
x

〈
η̂(m)

i (x, tn)η̂(l)
j (0, 0)

〉c
. (2.59)

In the definitions above we have denoted the time variable by tn to emphasize that the time evo-
lution from time 0 to time tn is computed with Tn. We however conjecture that, for sufficiently

13
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large n this quantity becomes independent of n, and we set

Cl,m
i, j = lim

n→∞
Cm,l,n

i, j . (2.60)

This property is easy to check if at least one of the indices m, l, i, j is equal to one. Using
the symmetry between the upper and lower indices in η̂(l)

i , the index which is equal to one
can be moved to an upper position. The correlation (2.59) can then be formulated using, say,∑

xη̂
(1)
i (x), which is the conserved energy Ei. The time evolution therefore drops and Cm,l,n

i, j
appears to be independent of n in such a case. As we will see in section 2.5, in more general
cases the numerical simulations support the fact that Cm,l,n

i, j is independent of n for n � min(m, l).

The family of generalized correlations Cl,m
i, j includes three quantities we have defined

previously:

c2 = C1,l
∞,∞, D = Cl,l

∞,∞, R = C1,1
∞,∞. (2.61)

As seen here, the superscripts l, m in (2.60) are restricted to 1 (for density) or l (for current)
in the original setting. However, keeping them general reveals an interesting symmetry of the
problem as we see below. Admitting the validity of the previous TBA argument leads to

Cl,m
i, j =

∞∑
k=1

∂η(l)
i

∂ε̄k

∂η(m)
j

∂ε̄k

1 + eε̄k

σk
(2.62)

=
∑
k�1

ρkσk(ρk + σk)v(i)
k v( j)

k v(l)
k v(m)

k . (2.63)

It tells that Cl,m
i, j is completely symmetric in the four indices.

The symmetry relating Cl,m
i, j to Ci,m

l, j and Cl, j
i,m derives from the equality η̂(l)

i = η̂(i)
l . For

example, the ball density correlation R = C1,1
∞,∞ coincides with C∞,∞

1,1 which is the soliton
current correlation under the time evolution T∞. In this particular case the symmetry can be
checked directly at the microscopic level9.

The symmetry relating Cl,m
i, j to Cm,l

j,i follows from the fact that, in the correlation〈
η̂(m)

i (x, s)η̂(l)
j (0, 0)

〉c
one can replace (x, s) by (−x,−s). The possibility to exchange, say, the

indices l and m in Cl,m
i, j is apparent in the TBA result (2.63) but it does not follow from a simple

microscopic symmetry. It will be interesting to seek such an enhanced symmetry among the
transport characteristics also in other integrable models admitting the GHD approach.

We note that the family of characteristics Cm,l
∞,∞ (m = 1, 2, . . . , l) interpolating c2 and D in

(2.61) are all expressible as a finite sum similar to (2.54):

Cm,l
∞,∞ =

∑
k<m

Wkv
(l)
k (v(m)

k − v(m)
m ) + c2v

(m)
m . (2.64)

9 To this end one compares the 1−energy density (or soliton density) e1(x, t) at times t and t + 1 (according to the T∞
evolution) to deduce the associated current j1(x, t) satisfying the discrete continuity equation e1(x, t + 1) − e1(x, t) +
j1(x + 1/2, t) − j1(x − 1/2, t) = 0. Doing so one realizes that the soliton current is identical to the ball density, up to
a half lattice spacing shift: j1(x, t) = n(x − 1/2, t). This explains the equality between their correlations and provides
an explicit check of the general symmetry mentioned above.
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When i, j, l, m are all finite, Cl,m
i, j is evaluated as a rational function by means of (C.15) with

a = z as

Cl,m
i, j =

∑
k<r

ρkσk(ρk + σk)v(i)
k v( j)

k v(l)
k v(m)

k +
zr(1 − z)4(1 + z2r+1)

(1 + z)3(1 − zr)2(1 − zr+1)2
v(i)

i v( j)
j v(l)

l v(m)
m ,

(2.65)

where r = max(i, j, l, m).

2.5. Numerical calculation of the Drude weights

In this section we present some direct numerical calculations of the correlation Cm,l,n
i, j . The

results are displayed in figures 4–6.
Figure 4 illustrates the dependence of Cm,l,n

i, j on the dynamical parameter n in the case m =

l and i = j = 99 (almost ∞). Since T1 is a simple translation we have η̂(l)
i (x, t1) = η̂(l)

j (x −
t1, 0) and (2.59) reduces to an equal-time correlation when n = 1 (no long-time limit). This
equal-time current–current correlation is computed in section 2.7 and the numerical data for
n = 1 agree with the analytical result. For general values of n we can compare the numerical
results for C l,l,n

∞,∞ with the Drude weight C l,l
∞,∞, and the data plotted in figure 4 suggest that

we have C l,l,n
∞,∞ = Cl,l

∞,∞ for n � l. We are however unaware of a method to obtain C l,l,n
∞,∞ in the

intermediate regime 1 < n < l.
Figure 5 illustrates the dependence on the dynamical parameter n in a case where m �= l (and

still i = j = 99). For n = 1 the correlation Cm,l,1
∞,∞ is again an equal-time correlation between

two generalized currents. For larger values of the dynamical parameter n the data displayed in
figure 5 suggest that we have Cm,l,n

∞,∞ = Cm,l
∞,∞ for n � min(m, l), even though we have no proof.

Finally, figure 6 illustrates the convergence of current–current correlations as a function of
time and for different time evolutions. This figure shows that it converges to C l,l,n

∞,∞ after only
a relatively short relaxation time. In this particular example (l = 5 and ball density p = 0.3)
the relaxation time appears to decrease when n increases. As for the long-time limit of the
correlator, it coincides with the TBA expression (2.63) only for n � l = 5, in agreement with
the conjectured proposed above.

If the long-time limit of a current–current correlation (that is, the Drude weight) is sub-
tracted, the time integral of the remaining part of the correlation is an element of the Onsager
matrix, which characterizes the diffusive corrections to the hydrodynamics [15, 36]. We see
from figure 6 that such Onsager coefficient would be dominated by a few short-time value of
the correlator. The detailed study of the Onsager matrix in the BBS is left for future studies10.

In the hydrodynamic projection scheme the Drude weights and its generalizations (2.59)
depend on the projections of the current operators onto the space spanned by the conserved
quantities. The energies Ei are conserved whatever the dynamical parameter n and their contri-
bution to the long-time limit of the current–current correlations was included in (2.63), via the
pseudoenergy variables. However, the numerical observation that Cm,l,n

i, j can be different from
(2.63) suggest that Tn may not always be sufficiently mixing inside each energy sector fixed by
the {Ei} data, in particular for small n. This is obvious for n = 1 (no mixing at all), but as a less
trivial example consider two solitons of sizes p and p′ under the evolution Tn, with n � p < p′.
Because the effective soliton velocities (2.8) are independent of the soliton size when they are
larger than n the mean distance between two big solitons will be almost constant in time (up to

10 The diffusive broadening of density steps in a domain-wall problem was studied analytically and numerically for
the BBS in [12, 21].
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Figure 4. Numerical results for the Drude weight Cl,l,n
99,99 (2.59) for different values of the

ball densities (p = 0.4 and p = 0.2), two values of l and different values of the param-
eter n characterizing the time evolution. The simulations were carried out on a periodic
system of size L = 60 000, with time tn = 1000 and Nsamples = 5 × 105 random initial
configurations (top and middle panel) and with Nsamples = 8 × 106 in the bottom panel.
The red horizontal lines represent the TBA result (2.45) and the green lines represent
(B.7).
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Figure 5. Numerical results for C3,6,n
99,99 (2.59) plotted as a function of n. The data suggests

that Cm,l,n
∞,∞ coincides with the TBA result (2.63) for Cm,l

∞,∞ when n � min(m, l). Simula-
tions performed with (periodic) system size L = 30 000, time tn = 1000 and 1.5 × 106

random initial conditions with ball density p = 0.3.

Figure 6. Correlation
∑

x〈η
(5)
99 (x, tn)η(5)

99 (0, 0)〉c plotted as a function of time for differ-
ent time evolutions Tn. Since T1 is a simple translation the dynamics is trivial and the
correlation is independent of time (purple curve, n = 1). For n � 2 the dynamics is how-
ever nontrivial, and the correlation relaxes to a finite value at sufficiently long times. For
n � 5 this long-time limit coincides with the TBA value (2.45) (horizontal red line).
Simulations performed with (periodic) system size L = 20 000, and 36 × 106 random
initial conditions with ball density p = 0.3.

small fluctuations due to the collisions with smaller and slower solitons). This may be a hint
why some minimal value of n seems required for a current–current correlation to converge to
the TBA result (2.63).
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2.6. Flux Jacobian and related matrices

In this section we present concrete forms of the flux Jacobians corresponding to the commuting
family of time evolutions in our BBS. We will also describe the relations with the matrices of
2nd cumulants and the Drude weights, as well as their generalization Cl,m

i, j .

2.6.1. Normal modes. In BBS, the role of the conserved charge qi and the current ji in the
flux Jacobian [15, equation (26)] are played by η(1)

i and η(l)
i if the time evolution is taken as

Tl. From [12, equation (3.9)], η(1)
i is related to the hole density as σi = 1 − 2η(1)

i . The associ-
ated conserved currents for the time evolution Tl are given by σiv

(l)
i . Therefore, we have the

equations of conservation:

∂tlσi + ∂x(σiv
(l)
i ) = 0. (2.66)

We use the fact that σi and v(l)
i are functions of y j given by σi =

∑∞
k=1Gik and σiv

(l)
i =

(Gκ(l))i = (GM)il/2. Their partial derivatives with respect to y j are calculated as

∂σi

∂y j
= −

∑
k

y−1
j
∂Gik

∂ε̄ j
= −

∑
k

y−1
j 2σ jv

(i)
j y jG jk = −2σ2

jv
(i)
j = −(GM)i jσ j, (2.67)

∂(σiv
(l)
i )

∂y j
= −1

2

∑
k

y−1
j
∂Gik

∂ε̄ j
Mkl = −

∑
k

y−1
j σ jv

(i)
j y jG jkMkl = −2σ2

jv
(i)
j v

(l)
j = −(GM)i jσ jv

(l)
j ,

(2.68)

where (2.35) is used. Substituting them into (2.66), we deduce that y j are normal modes [12,
equation (5.20)]:

∂tl y j + v(l)
j ∂xy j = 0. (2.69)

2.6.2. Family of flux Jacobians. Let us introduce the infinite dimensional matrices

V = (v(i)
j )i, j�1, V (l)

d = diag(v(l)
1 , v(l)

2 , . . .), σ̂ = diag(σ1, σ2, . . .), (2.70)

where the effective velocity is related to the hole density [12, equation (4.19)] as

v(l)
i =

min(l,i)∑
k=1

σl

σk−1σk
(2.71)

with σ0 = 1. We therefore have an explicit expression of the hole currents

j(l)hole
i = σiv

(l)
i =

min(l,i)∑
k=1

σiσl

σk−1σk
(2.72)

in terms of the hole densities σi. In the GHD context such an expression is an equation of state
[15, equation (22)]. The results (2.67) and (2.68) are expressed in matrix forms as

∂σ

∂y
= −GMσ̂,

∂(σv(l))
∂y

= −GMV (l)
d σ̂. (2.73)
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If we use σi as variables to express the currents, (2.66) is written as

∂tlσi +
∞∑
j=1

A(l) j
i ∂xσ j = 0. (2.74)

The matrix A(l) = (A(l) j
i )i, j�1 (row i, column j) is the flux Jacobian, where

A(l) j
i =

∂(σiv
(l)
i )

∂σ j
=

∑
k

∂(σiv
(l)
i )

∂yk

∂yk

∂σ j
. (2.75)

In terms of matrices in (2.73) this is equivalent to

A(l) = GMV (l)
d σ̂(GMσ̂)−1 = GMV (l)

d M−1G−1 = MGtV (l)
d (Gt)−1M−1, (2.76)

where GM = MGt is used. Note from (2.33) and (2.34) that GM = 2σ̂Vt = 2Vσ̂. Thus the
above result is also expressed as

A(l) = VV (l)
d V−1, i.e.

∞∑
k=1

A(l)k
i v(k)

j = v(l)
j v

(i)
j (∀ i, j, l ∈ Z�1). (2.77)

This confirms the fact that the effective velocities v(l)
j (1 � j � l) are the eigenvalues of A(l)

[15, equation (30)].
We remark that our flux Jacobians form a commuting family:

[A(l), A(l′)] = 0 (A(1) = 1). (2.78)

This comes from the fact that the matrix V which diagonalizes A(l) does not depend on l (only
the eigenvalues depend on l). This property reflects the commutativity [Tl, Tl′ ] = 0 of the time
evolutions in BBS.

Substitution of (2.71) into the first expression of (2.75) yields

A(l) j
i =

min(l,i)∑
k=1

∂

∂σ j

(
σiσl

σk−1σk

)
. (2.79)

A little inspection of this shows that A(l) has the block structure whose top left block is of size
l × l, the top right one is zero and the bottom right one is v(l)

l times the identity matrix of infinite
size:

A(l) =

(
A(l) 0
U v(l)

l I

)
, (2.80)

A(l) =

(
∂(σiv

(l)
i )

∂σ j

)
1�i, j�l

, U =

⎛⎝σl+1u1 σl+1u2 . . . σl+1ul

σl+2u1 σl+2u2 . . . σl+2ul

. . .

⎞⎠ , u j =
∂v(l)

l

∂σ j
. (2.81)

For instance A(3) reads as

A(3) =

⎛⎜⎜⎜⎜⎝
0 0 1

− (σ2 + 1)σ3

σ2
1

σ3

σ1

σ2 + 1
σ1

− (σ2 + 1)σ2
3

σ2
1σ2

−σ3(σ1 + σ3)
σ1σ2

2

σ1 + 2σ2σ3 + 2σ3

σ1σ2

⎞⎟⎟⎟⎟⎠ . (2.82)
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2.6.3. Covariance and Drude matrices. Let us introduce the matrices C = (Ci, j)i, j�1, B(l) =

(B(l)
i, j)i, j�1 and D(l) = (D(l)

i, j)i, j�1 whose elements are special cases of Cl,m
i, j in (2.63):

Ci, j = C1,1
i, j =

∑
p

ρpσp(ρp + σp)v(i)
p v( j)

p , (2.83)

B(l)
i, j = C1,l

i, j =
∑

p

ρpσp(ρp + σp)v(l)
p v(i)

p v( j)
p , (2.84)

D(l)
i, j = Cl,l

i, j =
∑

p

ρpσp(ρp + σp)(v(l)
p )2v(i)

p v( j)
p . (2.85)

The quantities C(l)
i, j and D(l)

i, j are static covariance and Drude weights [15, equations (158) and
(163)].

By using (2.77) it is easy to see

A(l)C = CA(l)t, B(l) = A(l)C, D(l) =
(
A(l)

)2
C = A(l)CA(l)t. (2.86)

In fact, the first relation is a special case of
∑

kA(l)k
i C̃k, j =

∑
kC̃i,kA(l)k

j for C̃i, j =
∑

pwpv
(i)
p v( j)

p

with arbitrary parameters wk. The equality of the coefficient of each wp follows directly from
(2.77).

Recall the matrix form of the flux Jacobian in (2.76), i.e.,

A(l) = M(1 + ŷM)−1V (l)
d (1 + ŷM)M−1. (2.87)

Introduce further diagonal matrices

ρ̂ = diag(ρ1, ρ2, . . .), ĝ = 1 + ŷ = diag(1 + y1, 1 + y2, . . .). (2.88)

Then the formula

Ci, j =
∑

p

ρp(1 + yp)(σpv
(i)
p )(σpv

( j)
p ) =

1
4

∑
p

(GM)piρp(1 + yp)(GM)pj (2.89)

derived from (2.33) and (2.34) is interpreted as C = 1
4 MGtρ̂ĝGM due to GM = MGt. Applying

(2.86) to this and (2.87) we find

C =
1
4

M(1 + ŷM)−1ρ̂ĝ(1 + Mŷ)−1M, (2.90)

B(l) =
1
4

M(1 + ŷM)−1V (l)
d ρ̂ĝ(1 + Mŷ)−1M, (2.91)

D(l) =
1
4

M(1 + ŷM)−1(V (l)
d )2ρ̂ĝ(1 + Mŷ)−1M. (2.92)

The factor 1
4 originates in the coefficient 2 in Mi j = 2 min(i, j), which is a non-essential artefact.

The results (2.87) and (2.90)–(2.92) agree with [15, equations (165)–(168)].11 We remark a
natural generalization

C(l,m) := (Cl,m
i, j )i, j�1 = A(l)C

(
A(m)

)t
(= C(m,l)) (2.93)

11 The correspondence with equations (127), (149) and (157) etc in [15] as follows: ρp(k) ↔ ρk, ρs(k) ↔ σk, n(k) ↔
(1 + 1/yk)−1, f (p) ↔ (1 + yp)−1, E′(p) ↔ min(l, p) (for Tl BBS dynamics), hi(p) ↔ min(i, p), (E′)dr(p) ↔ σpv

(l)
p ,

hdr
i (p) ↔ σpv

(i)
p , 1dr(p) ↔ σp,

∫ dp
2π ↔

∑∞
p=1.
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Table 3. Drude weight D for a few values of the ball density p and carrier capacity l.
For comparison the total current variance f is also given. For l = 1 the BBS dynam-
ics reduces to translations. In such a case the spatially integrated current is trivially
independent of time and f = D (compare (2.43) and (2.95)).

Ball density p l D (2.44) and (2.45) f (2.95) and (B.7)

p 1 p(1 − p) p(1 − p)
0.2 2 0.638 3506 0.672 498
0.2 5 1.744 263 1.857 532
0.2 10 1.901 627 2.023 662
0.4 2 1.606 536 1.790 640
0.4 5 22.570 957 26.048 13
0.4 10 117.6194 134.249 7390

covers C = C(1,1), B(l) = C(l,1) = C(1,l) and D(l) = C(l,l).

2.7. Equal-time current–current correlations

As a slight digression, we consider here the spatially integrated current

J =
∑

x

j(x, 0) (2.94)

and its variance

f = L−1
(〈

J2
〉
− 〈J〉2

)
=

∑
x

〈 j(x, 0) j(0, 0)〉c, (2.95)

where the factor L−1 insures that f is finite in the thermodynamic limit. The rhs of (2.95) is
analogous to the current–current correlation (2.43) which defines the Drude weight, except for
the important fact it is an equal-time correlation.

It is possible to compute f using a transfer matrix approach, as explained in appendix B.
f of course differs from the Drude weight, but the numerical values turn out to be close (see
table 3). Both diverge when approaching the half-filled limit p→ 1/2 at l = ∞, and both are
equal to p(1 − p) for l = 1 (in which case the BBS dynamics reduces to translations). We are
however unaware of a simple way to obtain f using TBA. The fact that f � D is a general
property, which follows from the Cauchy–Scwharz inequality associated to a suitable scalar
product between observables (see (3.14) of [37]).

3. Large deviation function

We are interested in the fluctuations of a quantity which, on average, grows linearly with time.
In such a case the large deviation function is a useful tool to characterize the fluctuations.
In general the large deviation function contains the information about all the cumulants of
the fluctuating quantity (full counting statistics)12. It also describes the rate at which large
fluctuations occur [22]. The large deviation function is in general a difficult quantity to obtain,
but some important progress has been made recently in the context of integrable systems [28,
29], where a general method to obtain the large deviation function associated to the transport

12 See however [35, 38] for an example where is this not the case.
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of a conserved charge has been constructed. In this section we apply these ideas to the case of
the BBS, where the calculations simplify considerably.

3.1. General method

We want to compute the large deviation associated to the number Nt of balls transferred from
the left to the right during time t, in some simple GGE stationary state13. By definition, if the
principle of large deviation is obeyed, we have in the large time limit:

F(λ) = lim
t→∞

1
t

ln
[
〈eλNt 〉β

]
. (3.1)

Or, in a more compact way:

etF(λ) ∼ 〈eλNt 〉β , (3.2)

where Nt =
∑t

s=0 j(0, s) is the number of balls passing through the origin during the time inter-
val [0, t]. In the above expression the expectation value 〈 f (t)〉β of an operator f at time t means:

〈 f (t)〉β =

∑
c f (c(t))e−βQ(c)∑

ce
−βQ(c)

, (3.3)

where c(t) is the ball configuration c evolved up to time t, and Q(c) is (conserved) total number
of balls in c. The parameterβ describing the i.i.d. state is related to the ball fugacity by e−β = z.
We focus here on a single conserved quantity (the total number of balls), but the approach can
be generalized to a GGE with several βi coupled to several conserved energies, and a function
F of several variables λi. See appendix C for a two-β case. Expanding F in powers of λ gives
access to the scaled cumulants cn:

F(λ) =
∞∑

n=1

λn

n!
cn and cn = lim

t→∞

1
t
〈(Nt)

n〉c
β. (3.4)

From the expression above it appears clearly that F is well-defined only if all the cumulants
〈(Nt)n〉c

β have the same t-linear scaling. It should be noted that there are some integrable models
where the above relation is not obeyed [38, 39].

Taking the derivative with respect to λ, we have:

dF(λ)
dλ

= lim
t→∞

1
t
〈NteλNt 〉β
〈eλNt 〉β

, (3.5)

where we assume that the above large-time limit exists.
Let us denote by QL

t and QR
t the charge in the left and right halves of the system at time t.

We have QL
t + QR

t = Q, independent of time. Thus,

Nt = QL
0 − QL

t = Q − QR
0 − QL

t . (3.6)

The relation (3.5) can be written

dF(λ)
dλ

= lim
t→∞

1
t
〈Nte−λ(QR

0+QL
t )〉β−λ

〈e−λ(QR
0+QL

t )〉β−λ

, (3.7)

13 We refer the reader to appendix C for the large deviation function associated to the joint distribution of the number
of transferred balls and the number of transferred solitons.
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Figure 7. The density operators n(x > 0, t = 0) appearing in QR
0 are uncorrelated from

the current operators j(x = 0, t > 0) in Nt. In the same way, the density operators n(x <
0, t > 0) appearing in QL

t are uncorrelated from Nt and from QR
0 .

where the factor exp(λQ) has been converted into a shift β → β − λ.
In the i.i.d. states we consider the equal-time connected correlation of two local opera-

tors, 〈O(x1, t)O(x2, t)〉c vanish if x1 �= x2. But since the ball propagation only takes place
in the x > 0 direction, we also know, by causality, that a two-time correlation of the form
〈O(x1, t1)O(x2, t2)〉c vanishes if (x1 − x2)(t1 − t2) < 0. This means that the local terms appear-
ing in QR

0 + QL
t (acting at x > 0 and at time 0 or at x < 0 and time t > 0), and the terms in Nt

(x = 0 and t > 0) are uncorrelated. The term e−λ(QR
0+QL

t ) thus decouples from Nt (figure 7) and
cancels between the numerator and denominator of (3.7). This leads to

dF(λ)
dλ

= lim
t→∞

1
t
〈Nt〉β−λ. (3.8)

The state defined by 〈. . .〉β−λ is an i.i.d. stationary state, so the expectation value of the currents
is independent of time, and we get

dF(λ)
dλ

= 〈 j(0)〉β−λ, (3.9)

where j(0) is the ball current at the origin (and time zero).
The equation (3.9) is closely related to the so-called ‘flow equation’ [28, 29]. As explained

in these two works, for a general integrable system the derivative dF(λ)
dλ of the SCGF is the

expectation value 〈 j〉β̃(λ) of the current in a modified GGE state parameterized with modified

inverse temperatures β̃i(λ). These inverse temperatures are determined by integrating the flow

equation dβ̃i

dλ = − sign (A(λ))i
i∗ from the initial condition where β̃ i(0) = βi are the parameters

of the original GGE (single parameter e−β = z in the i.i.d. case we consider). The index i
labels the conserved charges and i∗ is the index of the particular charge for which the SCGF
is computed. We compute here the SCGE associated to the number of balls, so i∗ = ∞. The
matrix Aik(λ) = ∂〈 ji〉β(λ)/∂qk, is the flux Jacobian (see section 2.6), it appears when linearizing
the Euler equations. A(λ) is defined by the derivatives of the current densities with respect to the
charges densities, evaluated in the λ-modified state. Its eigenvalues are the effective velocities
vi of the normal hydrodynamical modes (the soliton velocities in the BBS case). sign(A) is
defined as the matrix with the same eigenvectors as A but replacing each eigenvalue vi by
sign(vi) = ±1. Here comes a drastic simplification in the BBS case: all the soliton velocities

are positive and, therefore, sign(A) = Id and the flow equation becomes dβ̃i

dλ = −δi∗,i. Since in
the present case i∗ = ∞ the index i is thus also fixed to i = ∞. It follows that theλ-modification
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of the state is a simple shift of the parameter β associated to the ball density. The λ−modified
state remains i.i.d. but with β̃(λ) = β − λ.

3.2. Scaled cumulants generating function

In the rhs of (3.9) we need to consider the mean ball current in a modified i.i.d. state with
parameter β′ = β − λ, and hence a modified ball fugacity z′ = e−β+λ.

dF(λ)
dλ

= j(e−β+λ). (3.10)

Writing the integration we obtain

F(λ) =
∫ λ

0
j(e−β+λ′)dλ′ =

∫ zeλ

z

dz′

z′
j(z′). (3.11)

Reintroducing explicitly the parameter l of the dynamics (carrier capacity) and using the
explicit form of the ball current (2.9), the integration in (3.11) can be carried out explicitly
and gives

F(l)(λ) = ln

(
1 − (zeλ)l+1

1 − zeλ

)
− ln

(
1 − zl+1

1 − z

)
. (3.12)

As a sanity check we can compute its second derivative at λ = 0:

c2 =
d2F(l)

dλ2

∣∣∣∣
λ=0

(3.13)

and we recover (2.23).
The appendix C presents some generalization of the above results to a two-temperature

GGE, with one parameter coupled to the total number of balls and another one to the total
number of solitons. In particular a generalization of (3.12) is given in (C.23).

It is useful to consider the Legendre transform of F with respect to λ, the so-called large-
deviation rate function:

G( j) = jλ( j) − F(λ( j)), (3.14)

where λ( j) is a solution of

F′(λ( j)) = j. (3.15)

The probability to observe a transferred charge N = jt at time t is then

Pt(N) ∼ exp
(
−t G(N/t)

)
. (3.16)

G( j) is defined for 0 < j < l, since the maximum possible value of the ball current is l. It
is a convex function obeying G(0) = ln((1 − zl+1)/(1 − z)), G(l) = G(0) − l ln(z) reaching its
maximum zero at the mean current j = F′(0). The function G is represented in figure 8, in the
vicinity of its maximum, for one particular case (p = z/(1 + z) = 0.3 and l = 10).
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Figure 8. Probability distribution of the number Nt of balls having crossed the origin
between t = 0 and t = 400 (blue), and between t = 0 and t = 2000 (red). Ball density
p = 0.3 and capacity l = 10. The numerical data at t = 400 are obtained using 6 × 106

random initial conditions and the data at t = 2000 involve 2 × 106 random initial con-
ditions. These results are compared with the Gaussian obtained by doing a least-square
fit of the data (dashed lines). Such a fit has two free parameters: mean and variance. The
data at t = 400 are also compared to the Gaussian exp[−t( j− < j >)2/(2c2)] (magenta
line), without any adjustable parameter, where < j >= 0.749 0144 is the exact mean
value of the current (2.9) and c2 = 1.301 6578 is the exact second cumulant (2.23).
Finally, the data are compared to the exact large deviation rate function (continuous lines)
exp(−tG(N/t)). At t = 400 it is possible to see that the numerical data departs from a
simple Gaussian and are instead consistent with the theoretical prediction involving the
large deviation rate function G (3.14).

3.3. l = ∞

In the limit l →∞ the SCGF (3.12) simplifies to

F(∞)(λ) = ln

(
1 − z

1 − zeλ

)
. (3.17)

The interval where F is defined is λ ∈ [−∞, β], which is equivalent to zeλ < 1 (recall that
z = e−β). For λ→−∞ the current j = F′(λ) tends to zero, and for λ→ β we have instead
j = F′(λ) →+∞. The full range of physical values for the ball current is covered by F′, as it
should. A generalization of (3.17) to a two-temperature GGE is given in (C.26).

In that case the large-deviation rate function can be obtained explicitly:

G(∞)( j) = − ln(1 − z) − j ln(z) − (1 + j) ln(1 + j) + j ln( j). (3.18)

This function is plotted in figure 9 for a few different values of the ball fugacity. The general-
ization to a two-temperature GGE is given in (C.28). When z → 1−F(∞)(λ) becomes singular
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Figure 9. Large-deviation rate function G(l=∞)( j) plotted as a function of the current j,
for different values of the ball fugacity z. The mean current (minimum of G) and the
second cumulant c2 diverge when z → 1−.

in λ = 0 and the associated cumulants diverge. For instance: c2 = z/(1 − z)2 at l = ∞. This
can be interpreted as a phase transition when the ball density approaches 1/2. Some other
properties of this transition were discussed in [3].

To conclude this section we note that the large deviation principle for the energies Ek in i.i.d.
states was studied for a multicolor BBS by regarding the history of carriers going through the
states as a Markov process [11]. In that previous study the system size is the variable which
plays a role similar to the role played by time here.

4. Conclusions

We have computed analytically several quantities related to the current and density fluctuations
in stationary i.i.d. states. We have obtained the SCGF associated to the number Nt of balls
crossing the origin during time t, from which all the cumulants can be extracted. The Legendre
transform of this function could be compared with the probability distribution of Nt extracted
from numerical simulations. This is one of the very few interacting and deterministic models
where the SCGF could be computed exactly ([38] is another recent example).

The Drude weights—defined as the long-time limit of a spatially integrated current–current
correlation—could also be obtained using TBA combined with hydrodynamical projection.
Explicit analytical expressions for the Drude weights could be compared successfully with
numerical simulations.

The existence of a family of commuting time evolutions is an important property of inte-
grable systems, although implementing them in actual systems can be cumbersome in practice.
The BBS is a distinguished example of integrable cellular automata where the all commuting
time evolutions have a simple and neat implementation. Exploiting these time evolutions a
set of new generalized currents correlations (or generalized Drude weights) was constructed
and shown to enjoy unexpected symmetry relations. Some of these symmetry relations can
be explained at the microscopic level, while others only emerge in the long-time limit. We
observed that the numerical results for the current correlations at long times coincide with the
TBA results only for certain time evolution, namely Tn with sufficiently large n. This sug-
gests that Tn for small n is insufficiently mixing and the observed correlations in this regime
still escape our understanding. Understanding these results and reconciling them with the
hydrodynamic projection ideas would certainly deserve further study.
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We also stress that a number of these results could be generalized to a larger family of (non
i.i.d.) GGE states with two temperatures, respectively coupled to the number of balls and to
the number of solitons.

It is quite remarkable that so many explicit formulae could be obtained for nontrivial quan-
tities related to long-distance and long-time limit of correlations in such an out-of-equilibrium
interacting problem. These could prove to be useful to compare BBS with other models, either
integrable or non-integrable, and to shed some light about fundamental questions like the
emergence of hydrodynamics.
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Appendix A. Correlation sum rules

We derive a sum rule connecting density–density correlations to current–current ones. The
argument is directly inspired from [30]. We consider the following quantity

∞∑
x=−∞

f (x) (n(x, t) − n(x, 0)) , (A.1)

where n is the ball density operator, and f some test function defined on the lattice sites. Next
we introduce the charge of the region ] −∞, x ]:

N〈(x, t) =
x∑

y=−∞
n(y, t) (A.2)

n(x, t) = N〈(x, t) − N〈(x − 1, t) (A.3)

(A.1) can be rewritten as

∞∑
x=−∞

f (x) (n(x, t) − n(x, 0)) =
∞∑

x=−∞
f (x)

(
N〈(x, t) − N〈(x − 1, t) − N〈(x, 0) + N〈(x − 1, 0)

)
(A.4)

=
∞∑

x=−∞
( f (x) − f (x + 1))

(
N〈(x, t) − N〈(x, 0)

)
(A.5)
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= −
∞∑

x=−∞
( f (x) − f (x + 1))

∫ t

0
j(x + 1, s)ds (A.6)

=
∞∑

x=−∞
( f (x) − f (x − 1))

∫ t

0
j(x, s)ds. (A.7)

The current can also be used to write

n(0, t) − n(0, 0) =
∫ t

0
( j(0, s) − j(1, s)) ds. (A.8)

We then multiply (A.7) by (A.8)

∞∑
x=−∞

f (x) (n(x, t) − n(x, 0)) (n(0, t) − n(0, 0))

=
∞∑

x=−∞
( f (x) − f (x − 1))

∫ t

0
j(x, s)ds

∫ t

0

(
j(0, s′) − j(1, s′)

)
ds′ (A.9)

and take the connected average:

∞∑
x=−∞

f (x)〈(n(x, t) − n(x, 0)) (n(0, t) − n(0, 0))〉c

=

∞∑
x=−∞

∫ t

0

∫ t

0
ds ds′ ( f (x) − f (x − 1))

〈
j(x, s)

(
j(0, s′) − j(1, s′)

)〉c
(A.10)

=
∞∑

x=−∞

∫ t

0

∫ t

0
ds ds′( f (x) − f (x − 1))〈( j(x, s) − j(x − 1, s)) j(0, s′)〉c, (A.11)

where, in the last equality, we have used the translation invariance of the current–current
correlator. This can finally be rewritten

∞∑
x=−∞

f (x)〈(n(x, t) − n(x, 0)) (n(0, t) − n(0, 0))〉c

=

∞∑
x=−∞

∫ t

0

∫ t

0
ds ds′ (2 f (x) − f (x + 1) − f (x − 1)) 〈 j(x, s) j(0, s′)〉c

. (A.12)

Appendix B. Transfer matrix calculation for the current fluctuations

This section presents a transfer matrix calculation of the fluctuations of the current (2.95). It is
an extension of the calculation presented in the appendix E of [12].

Here we consider the periodic BBS model on a chain of length L. It admits a discrete set
of commuting evolutions characterized by a row to row transfer propagator Tl labelled by a
positive integer l representing the capacity of the carrier. The propagator Tl takes the form of a
vertex transfer matrix (see figure B1) where the horizontal links can contain up to l balls which
are auxiliary variables: 0 � nc � l. The vertical links contain zero or one ball: 0 � nb � 1
which are the BBS variables. Time flows down, so that at each time step, the south vertical
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Figure B1. Four examples of vertices.

links are occupied according to the north vertical link configurations. We can see the evolution
as the result of the passage of a carrier transporting up to l balls from west to east and updating
each vertical link successively passing through the vertices. If the north vertical link is empty
(nb

N = 0) and the carrier has at least one ball (nc
W > 0), it leaves one of its balls to the south

vertical link during the passage (nb
S = 1, nc

E = nc
W − 1). If it does not carry balls (nc

W = 0), it
passes without changing either the vertical occupation or its load (nS = 0, nc

E = 0). If the north
vertical link is filled (nb

N = 1) and the carrier carries strictly less than l balls (nc
W < l), it picks

up a ball and leaves the south vertical link empty (nc
E = nc

W + 1, nb
S = 0). If it carries l balls

(nc
W = l), it passes without changing either the vertical occupation or its load (nb

S = 1, nc
E = l).

On a periodic chain, it can be shown (proposition 5.1 of [2]) that the periodicity condition on
the horizontal links uniquely determines the load of the carrier14.

As a result, the transfer propagator can be expressed as:

(Tl)
nb(t)
nb(t+1)

= 〈nb(t + 1)|Tr

(
L∏

k=1

Lk

)
|nb(t)〉, (B.1)

where nb(t) stands for the configuration {nb(x, t), 1 � x � L} and 〈nb
S|L|nb

N〉 = 〈nb
S|L|nb

N〉nc
W ,nc

E
is a (l + 1) × (l + 1) permutation matrix with nonzero matrix elements equal to one whenever
the corresponding vertex is allowed.

Due to charge conservation, nN + nW = nS + nE, the ball density nb(x, t) coincides with the
number of balls on the vertical links and the ball current j(x, t) = nc(x, t) to the number of balls
on the horizontal links.

We can give a fugacity to the balls by inserting the operator zQ = z
∑L

x=1nb(x,t) which com-
mutes with the propagator. Denote |0〉 the state obtained by summing all the ball configurations
with weight one. The i.i.d. stationary state with ball density p = z/(z + 1) is zQ|0〉.

We can also give a fugacity to the total current at time t by weighting the horizontal links by
yJ(t) = y

∑L
x=1 j(x,t). We denote by Tl(y) (or L(y) for a single site) the modified propagator where

14 To be precise: it is so when the density is not exactly equal to 1/2.
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we weight each vertex by ync
W instead of 1, which has the effect to weight each configuration

by yJ(t).

(B.2)

Consider the matrix element Z = 〈0|zQyJ(t)|0〉 = Tr (L0(y) + zL1(y))L where L
0(y),L1(y)

are the deformed vertex matrices with nb
N = 0, 1 respectively (nb

S is redundant).
Denoting L

z(y) = L
0(y) + zL1(y), we have:

〈0|Lz(y) = 〈0|+ z〈1|
〈n|Lz(y) = yn〈n − 1|+ zyn〈n + 1| if n �= 0, l

〈l|Lz(y) = yl〈l − 1|+ zyl〈l|. (B.3)

As an example, for l = 3 we have

L
z(y) =

⎛⎜⎜⎝
1 z 0 0
y 0 zy 0
0 y2 0 zy2

0 0 y3 zy3

⎞⎟⎟⎠ . (B.4)

The matrix element Lz(1)αβ/(z + 1) is the probability to have β balls on the east link know-
ing that there are α on the west link. Therefore, the components of the left eigenvector of
L

z(1)/(z + 1) with eigenvalue one,
∑l

k=0zk〈k|, are the unnormalized probabilities for the car-
rier to contain k balls. The current formula (2.9) is obtained as the average number of balls in
the carrier.

The second cumulant c2 and f , the integrated current–current connected correlation, are
then given by second derivatives of ln(Z):

c2 =
1
L

(
z
∂

∂z

)(
y
∂

∂y

)
ln(Z)|y=1, (B.5)

f = 〈J(0) j(0, 0)〉c =
1
L

(
y
∂

∂y

)2

ln(Z)|y=1. (B.6)

By analyzing the values of f for various values of l, it has also been possible to conjecture
the following analytical expression for f :

f =
z(1 + 6z + z2)(1 − z3l+3)

(1 − z)4(1 − zl+1)3
− 24zl+5(1 − zl−3)

(1 − z)4(1 − zl+1)3

− 3zl+2(gl+2 + 7zgl + 8z2gl−2)
(1 − z)3(1 − zl+1)3

− (l + 1)2zl+1(gl+2 + 2l(1 + z)gl+1 + 3zgl)
(1 − z)(1 − zl+1)3

,

(B.7)

where g j = 1 + z j.
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Appendix C. Drude weight and SCGF in a two-temperature GGE

The BBS has the conserved quantities Ek = L
∑

j�1 min( j, k)ρ j for k = 1, 2, . . . [12]. E∞ is
the total number of balls with which the main text is concerned. In this appendix we present
a partial generalization of the results to the two-temperature GGE corresponding to the statis-
tical weight e−β1E1−β∞E∞ . The conserved quantity E1 is the number of solitons. The inverse
temperature β in the main text is denoted by β∞ here.

Following [12] (3.20) we parameterize the temperatures by a, z as

e
1
2 β1 =

a
1
2 − a− 1

2

z
1
2 − z−

1
2

, e−β∞ = z. (C.1)

The single temperature GGE(β∞) corresponds to the limit a → z. Derivatives by the tempera-
tures are expressed in terms of a and z as in equations (3.22) and (3.23) in [12]:

∂

∂β1
=

∂a
∂β1

∂

∂a
+

∂z
∂β1

∂

∂z
= −a(1 − a)

1 + a
∂

∂a
, (C.2)

∂

∂β∞
=

∂a
∂β∞

∂

∂a
+

∂z
∂β∞

∂

∂z
= −a(1 − a)(1 + z)

(1 + a)(1 − z)
∂

∂a
− z

∂

∂z
. (C.3)

Densities, effective velocity and currents have been obtained in [12] as follows ((C.7) was
not included therein):

σk =
(1 − a)(1 + azk)
(1 + a)(1 − azk)

, ρk =
azk−1(1 − a)(1 − z)2(1 + azk)

(1 + a)(1 − azk−1)(1 − azk)(1 − azk+1)
,

(C.4)

v(l)
k =

1 + azl

1 − azl
vmin(k,l), vk =

1 + a
1 − a

k − 2a(1 + z)(1 − zk)
(1 − a)(1 − z)(1 + azk)

. (C.5)

ball current : j (l)
∞ =

∑
k�1

kρkv
(l)
k =

a(1 + z)(1 − zl)
(1 + a)(1 − z)(1 − azl)

− lazl

1 − azl
, (C.6)

soliton current : j(l)1 =
∑
k�1

ρkv
(l)
k =

a(1 − zl)
(1 + a)(1 − azl)

. (C.7)

The results (C.6) and (C.7) are the j = ∞ and j = 1 cases of (2.57):

η(l)
j =

a(1 + z)(1 − zmin( j,l))(1 + azmax( j,l))
(1 + a)(1 − z)(1 − az j)(1 − azl)

− min( j, l)a(z j + zl)
(1 − az j)(1 − azl)

. (C.8)

Set Wi = ρiσi(ρi + σi)v2
i as in the main text. Then the sum formula (2.51) admits the following

generalization:∑
i<l

Wi =
a(1 − a)(1 + z)Al

(1 + a)3(1 − z)(1 − azl−1)2(1 − azl)2
, (C.9)

Al = 1 + 2a(1 + a2)z2l−1 + a4z4l−2 + a2z2l−2(1 + 8z + z2) − azl−1(2 + a3z2l−1)gl(z)

− zl(1 + 2a3z2l−1)gl(z
−1) − a2zl−1hl(z) − a2z3l−1hl(z

−1), (C.10)
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gl(z) =
z + (1 − l(1 − z))2

1 + z
,

hl(z) = (1 + l)2 + l2z +
(1 − 2l + z)(3 + z + 2lz)

1 + z
. (C.11)

This is easily shown by induction on l and A0 = A1 = 0. The above Al precisely reduces to
(2.51) in the single temperature case a = z.

Define the second cumulant c(l)
2 and the Drude weight D(l) by (2.41) and (2.45) with ρi, σi, v

(l)
i

specified in (C.4) and (C.5). From v(1)
i = 1 we have

D(1) =
∑
i�1

Wi =
a(1 − a)(1 + z)A∞

(1 + a)3(1 − z)
=

a(1 − a)(1 + z)
(1 + a)3(1 − z)

, (C.12)

c(l)
2 =

a(1 − a)(1 + z)2(1 − zl)(1 + a2zl)
(1 + a)3(1 − z)2(1 − azl)2

+
2az(1 − zl)

(1 + a)(1 − z)2(1 − azl)

− alzl

(1 − azl)2

(
l +

2(1 − a)(1 + z)
(1 + a)(1 − z)

)
(C.13)

= − ∂ j(l)∞
∂β∞

. (C.14)

For D(l) with general l, formally the same formula as (2.54) with z
(1+z)2 replaced by (C.12) is

valid. These results reduce to the single temperature case at a = z. Another useful sum formula
is ∑

i�r

ρiσi(ρi + σi) =
a(1 − a)3(1 − z)zr−1

(
1 + a2z2r−1

)
(1 + a)3

(
1 − azr−1

)2
(1 − azr)2

. (C.15)

The ball density p in the two-temperature GGE is known to be p = a
1+a in [12, (3.23)].

Unlike (2.46), the result (C.12) does not coincide with the p(1 − p) reflecting the fact that the
two-temperature GGE under consideration is not i.i.d.

It is natural to introduce the joint cumulant generating function

F(λ,μ) = lim
t→∞

1
t

ln 〈eλN∞,t+μN1,t〉β∞,β1 , (C.16)

where the superscript l is suppressed and N∞,t =
∫ t

0 j(l)∞(0, τ )dτ and N1,t =
∫ t

0 j(l)1 (0, τ )dτ . By
the same argument as before, we have

∂F(λ,μ)
∂λ

= j(l)∞(β∞ − λ, β1 − μ),
∂F(λ,μ)

∂μ
= j(l)1 (β∞ − λ, β1 − μ). (C.17)

Let (ζ,α) be the parameters (z, a) corresponding to (β∞ − λ, β1 − μ) in the sense of (C.1).
Then from (C.6) and (C.7) the currents are expressed as

j(l)∞(β∞ − λ, β1 − μ) =
α(1 + ζ)(1 − ζ l)

(1 + α)(1 − ζ)(1 − αζ l)
− lαζ l

1 − αζ l
, (C.18)

j(l)1 (β∞ − λ, β1 − μ) =
α(1 − ζ l)

(1 + α)(1 − αζ l)
. (C.19)
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Here (ζ,α) are regarded as functions of (λ, μ) including (z, a) as parameters. Namely,

α
1
2 − α− 1

2

ζ
1
2 − ζ−

1
2
= e

1
2 (β1−μ) =

a
1
2 − a− 1

2

z
1
2 − z−

1
2

e−
1
2μ ζ = e−β∞+λ = zeλ. (C.20)

They imply the derivative relations similar to (C.2) and (C.3):

∂

∂λ
=

α(1 − α)(1 + ζ)
(1 + α)(1 − ζ)

∂

∂α
+ ζ

∂

∂ζ
,

∂

∂μ
=

α(1 − α)
1 + α

∂

∂α
. (C.21)

By using (C.18), (C.19) and (C.21), one can directly check the consistency of (C.17):

∂ j(l)∞(β∞ − λ, β1 − μ)
∂μ

=
∂ j(l)1 (β∞ − λ, β1 − μ)

∂λ
. (C.22)

The solution to (C.17) satisfying F(0, 0) = 0 is given by

F(λ,μ) = ln

(
1 − αζ l

1 − α

)
− ln

(
1 − azl

1 − a

)
, (C.23)

where α = α(λ, μ) and ζ = ζ(λ, μ)(= zeλ) are specified as the solution to (C.20) satisfying
α > 0. Note that α(λ, μ = 0)|a=z = zeλ. Thus, the result (C.23) provides a generalization of
(3.12) reproducing the latter as F(λ, μ = 0)|a=z = F(l)(λ).

One can check ∂2F
∂λ2

∣∣∣
λ=μ=0

= c(l)
2 . The other second order scaled cumulants are given by

lim
t→∞

1
t
〈N∞,tN1,t〉c

β∞,β1
=

∂2F
∂λ∂μ

∣∣∣∣
λ=μ=0

=
a(1 − a)

(
(1 + z)(1 − zl)(1 + a2zl) − (1 + a)2(1 − z)lzl

)
(1 + a)3(1 − z)(1 − azl)2

, (C.24)

lim
t→∞

1
t
〈N2

1,t〉c
β∞,β1

=
∂2F
∂μ2

∣∣∣∣
λ=μ=0

=
a(1 − a)(1 − zl)(1 + a2zl)

(1 + a)3(1 − azl)2
. (C.25)

We leave an interesting problem of studying the Hessian of F in relation to the convexity of
F for a future work.

When l = ∞, (C.23) in the regime zeλ < 1 simplifies to

F(∞)(λ,μ) = ln

(
1 − a
1 − α

)
. (C.26)

This is still a non-trivial function of λ and μ via (C.20). From (C.17)–(C.19) with l = ∞, the

equation
(

∂F(∞)(λ,μ)
∂λ

, ∂F(∞)(λ,μ)
∂μ

)
= (J∞,J1) has the solution

λ∗ = ln

(
J∞ − J1

z(J∞ + J1)

)
, μ∗ = ln

(
4(1 − J1)J3

1(a + a−1 − 2)

(J2
∞ − J2

1)(1 − 2J1)2(z + z−1 − 2)

)
, (C.27)
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which is deduced from α∗ =
J1

1−J1
, ζ∗ =

J∞−J1
J∞+J1

. Now the large deviation rate function

G(∞)(J∞,J1) = J∞λ∗ + J1μ∗ − F(∞)(λ∗,μ∗) is given by

G(∞)(J∞,J1) = J∞ ln

(
J∞ − J1

z(J∞ + J1)

)

+ J1 ln

(
4(1 − J1)J3

1(a + a−1 − 2)

(J2
∞ − J2

1)(1 − 2J1)2(z + z−1 − 2)

)
− ln

(
(1 − a)(1 − J1)

1 − 2J1

)
.

(C.28)

Since every soliton carries at least one ball, the ball currentJ∞ and the soliton currentJ1 are to
be considered in the domain J∞ > J1. Similarly, from (C.7) with l →∞, one should suppose
J1 < 1. Note that G(∞)(J∞,J1) is finite at J1 = 1

2 .
The single temperature case in the main text corresponds to setting a = z, μ = 0.

In fact, (C.20) enforces α∗ = ζ∗ leading to J1 = J∞
1+2J∞

and μ∗ = 0. Then (C.28) reduces

G(∞)( j = J∞) in the main text.

Appendix D. Microscopic definition of η̂(l)
i (x)

Here we outline the proof of the properties of the generalized current η̂(l)
i (x) claimed in the

beginning of section 2.4. We begin by recalling the combinatorial R in the crystal base theory,
a theory of quantum groups at q = 0, for which readers are referred to [2, section 2.2] and the
references therein.

For a positive integer l, define a set Bl = {α = (α0,α1) ∈ (Z�0)2|α0 + α1 = l}. Introduce
an infinite set known as an affine crystal Aff(Bl) = Bl × ζZ = {αζn|α ∈ Bl, n ∈ Z}, where ζ
is an indeterminate. Define a map Rl,m : Aff(Bl) ⊗ Aff(Bm) → Aff(Bm) ⊗ Aff(Bl) by15

Rl,m : αζa ⊗ βζb �→ β̃ζb+H(α⊗β) ⊗ α̃ζa−H(α⊗β) (D.1)

for any a, b ∈ Z. Here forα = (α0,α1) ∈ Bl, β = (β0, β1) ∈ Bm, the image α̃ = (α̃0, α̃1) ∈ Bl,
β̃ = (β̃0, β̃1) ∈ Bm and H(α⊗ β) ∈ Z are specified by

α̃i = αi + min(αi+1, βi) − min(αi, βi+1),

β̃i = βi − min(αi+1, βi) + min(αi, βi+1), (D.2)

H(α⊗ β) = min(α0, β1) (D.3)

with all the indices in Z2. The map Rl,m is called an (affine) combinatorial R. It is the quantum
R matrix for (spin l/2 rep) ⊗ (spin m/2 rep) of Uq(ŝl 2) at q = 0 with respect to the crystal base,
which retains all the combinatorial essence. The indeterminate ζ is a remnant of the spectral
parameter of the R matrices. The simpler version forgetting it (the one formally corresponding
to ζ = 1) is called (classical) combinatorial R. In what follows the both versions will simply

15 Tensor product ⊗ in this appendix can just be regarded as product of sets.
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be denoted by R. The relation (D.1) is customarily depicted as

It satisfies the inversion and the Yang–Baxter relations

Rm,lRl,m = Id, (D.4)

(1 ⊗ Rk,l)(Rk,m ⊗ 1)(1 ⊗ Rl,m) = (Rl,m ⊗ 1)(1 ⊗ Rk,m)(Rk,l ⊗ 1), (D.5)

which are equalities of the maps Aff(Bl) ⊗ Aff(Bm) → Aff(Bl) ⊗ Aff(Bm) and Aff(Bk) ⊗
Aff(Bl) ⊗ Aff(Bm) → Aff(Bm) ⊗ Aff(Bl) ⊗ Aff(Bk) for any k, l, m ∈ Z�1. Note that these rela-
tions include the equality of the powers of ζ for each tensor component. For example, the
inversion relation tells

H(α⊗ β) = H(β̃ ⊗ α̃). (D.6)

Now we consider BBS. An element α ∈ Bl can be interpreted as a capacity l carrier contain-
ing α1 balls. When l = 1, it may also be regarded as a local BBS state containing α1(= 0, 1)
ball. The BBS on the length L periodic lattice is a dynamical system on B⊗L

1 . In what follows, a
BBS state s = (s1, . . . , sL) ∈ {0, 1}L is identified with (1 − s1, s1) ⊗ · · · ⊗ (1 − sL, sL) ∈ B⊗L

1 ,
which will also be denoted by s1 ⊗ · · · ⊗ sL.

The time evolution s′ = Tl(s) and the associated lth energy El(s) are defined by the
composition of the combinatorial R as follows:

Here the carrier u ∈ Bl is determined uniquely from s = s1 ⊗ · · · ⊗ sL by the periodic boundary
condition, namely, by requiring that it comes back to u itself after penetrating s provided that
the ball density is not exactly 1/2.

Let u′ ∈ Bi be another carrier for the time evolution Tl(s) → TiTl(s). Set R : u′ζ0 ⊗ uζ0 �→
ũζh ⊗ ũ′ζ−h where h = H(u′ ⊗ u). From the Yang–Baxter relation we have
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Comparing the two sides we get the commutativity TlTi(s) = TiTl(s) and the energy conserva-
tion Ei(s) = Ei(Tl(s)), El(s) = El(Ti(s)) as is well known.

Now consider the intermediate stage where the carriers have only gone through the first
x − 1 local states s<x = s1 ⊗ · · · ⊗ sx−1. To systematize the notation we write u, u′, h in the
above diagram as u(0), u′(0), h(0). Then the corresponding diagram looks as

where h(x) = H(u′(x) ⊗ u(x)). The carriers u(x) and u′(x) (resp. ũ(x) and ũ′(x)) at this position
do not yet have to return to the initial ones u(0) and u′(0) (resp. ũ(0) and ũ′(0)). Define the local
observables

η̂(l)
i (x) = H(u′(x) ⊗ u(x)), η̂(i)

l (x) = H(ũ(x) ⊗ ũ′(x)). (D.7)

Then the following properties are satisfied.

(i) η̂(l)
i (x) = η̂(i)

l (x), (D.8)

(ii)

⎧⎨⎩El(Ti(s<x)) − El(s<x) + η̂(i)
l (x) − η̂(i)

l (0) = 0,

Ei(Tl(s<x)) − Ei(s<x) + η̂(l)
i (x) − η̂(l)

i (0) = 0.
(D.9)

In fact (i) is a consequence of (D.6). As for (ii) both relations follow simultaneously by compar-
ing the powers of ζ in the above diagram using (i). The upper relation, for instance, is nothing
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but the space [0, x]-integrated equation of continuity for El with respect to the time evolution
Ti, where η̂(i)

l (x) plays the role of local current at x.
As an example, η̂(3)

2 (x) associated with T2T3 are given in red letters in the top panel of
figure 3. On the other hand, η̂(2)

3 (x) associated with T3T2 are given similarly in the bottom
panel of figure 3. One can observe the equality η̂(3)

2 (x) = η̂(2)
3 (x) everywhere. In this example,

η̂(2)
3 (x) = η̂(2)

∞ (x) holds and it coincides with the carriers for T2, which is indeed the ball current.
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